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Abstract. The aim of this retrospective study was to investigate the accuracy of
dynamic navigation for the placement of intentionally tilted implants in the
posterior maxilla. The study included 12 patients with edentulism or continuous
multiple tooth loss, who had 48 implants inserted under dynamic navigation
guidance in the posterior maxilla. Twenty-four implants near maxillary sinuses
were intentionally tilted. The average platform deviation was 1.3 � 0.4 mm (range
0.8–2.3 mm), apex deviation was 1.1 � 0.5 mm (range 0.2–2.3 mm), and axis
deviation was 3.1 � 1.0� (range 1.8–6.7�). The other 24 implants were axially
positioned. The average platform deviation was 1.5 � 0.5 mm (range 0.7–3.1 mm),
apex deviation was 1.3 � 0.7 mm (range 0.5–3.1 mm), and axis deviation was 3.2 �
1.5� (range 1.5–7.7�). There was no significant difference in platform deviation,
apex deviation, or axis deviation between the tilted implants and implants in the
axial position (P > 0.05). This analysis indicates that a dynamic navigation system
can be used as a method of guidance to place intentionally tilted implants as
accurately as axially positioned implants in the posterior maxilla, thereby
preventing damage to the maxillary sinuses and the need to graft bone.
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Implants need to be placed in optimal
positions to ensure favourable long-term
treatment outcomes in terms of the state of
the prosthesis and the health of the peri-
implant tissue. The emphasis during sur-
gery is sufficient height and thickness of
the bone wall, prosthetically driven im-
plantation, and low-trauma tissue han-
dling1,2. Since the introduction of
dynamic navigation technology in dental
implantology in the 1990s3, many benefits
have been shown. First, the surgeon can
use this technology to plan the positions of
implants preoperatively4. Second, this
technology helps the surgeon insert
implants accurately according to the im-
plant plan with real-time images5. Finally,
this technology can be used for patients
with a limited mouth opening and diffi-
cult-to-access locations, such as the pos-
terior areas of the jaws6.
Dynamic navigation is used to track the

positions of the patient and the hand piece
when holes are drilled and implants are
ons. Published by Elsevier Inc. All rights reserved.
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Fig. 1. The positions of virtual restorations and the positions of implants were planned.
placed using optical technologies. A mon-
itor is used to visually display the posi-
tions of the burs and implants in real time.
There are both passive and active dynamic
navigation systems. In passive systems,
tracking arrays reflect light emitted from
a light source to stereo cameras. In active
systems, tracking arrays directly emit light
to stereo cameras6.
Insufficient vertical bone volume in the

posterior region of the maxilla often com-
plicates implant insertion7. Although bone
grafting techniques successfully over-
come the problem of insufficient vertical
bone volume8, there are limitations of
bone grafting techniques, including a long
healing time and biological complica-
tions9,10. To overcome the limitations of
bone grafting techniques, implantologists
have proposed the use of distal inten-
tionally tilted implants in the posterior
maxilla11. The clinical performance of
intentionally tilted implants is equivalent
to that of implants in an axial position12,13.
The use of distal intentionally tilted
implants can maximize the utilization of
available bone volume in the posterior
maxilla, decrease the need for bone aug-
mentation, enhance implant primary sta-
bility when long implants are used, and
shorten the cantilever11,13,14.
Based on the advantages mentioned

above, dynamic navigation is considered
a promising technology for placing inten-
tionally tilted implants. However, few
studies on the accuracy of dynamic navi-
gation for intentionally tilted implants
have been published.
The aim of this retrospective clinical

study was to investigate the accuracy of
dynamic navigation for the placement of
intentionally tilted implants in the poste-
rior maxilla.

Materials and methods

This study was approved by the Human
Research Ethics Committee of Peking
University School and Hospital of Stoma-
tology.

Patient selection

Patients who underwent implant therapy
between September 2019 and January
2021 at the First Clinical Division, Peking
University School and Hospital of Stoma-
tology were selected and analysed retro-
spectively. Available patients were
selected consecutively if they met the
inclusion criteria.
The inclusion criteria were as follows:

(1) edentulism or continuous multiple
tooth loss in the maxilla; (2) Cawood
and Howell class III maxillary atrophy;
(3) vertical bone height in the posterior
maxillary region, referring to the maxil-
lary region from premolars to molars, less
than 6 mm; and (4) intentionally tilted
implants to be placed in the maxilla under
dynamic navigation.
The following exclusion criteria were

applied: (1) cases without intentionally
tilted implants; (2) cases without postop-
erative cone beam computed tomography
(CBCT) scans; and (3) cases with horizon-
tal ridge augmentation.

Treatment procedure

The patients underwent routine clinical
examinations. They were informed about
the dynamic navigation technology and
the treatment procedure. All patients
signed informed consent forms.
On the day of the operation, six titanium

microscrews were inserted into the maxil-
lary bone transmucosally under infiltration
anaesthesia. The patient underwent a pre-
operative CBCT scan with the intraoral
microscrews in place. The DICOM dataset
was inputted into the active dynamic nav-
igation system (DHC-DI2; Digital-health
Care Co. Ltd., Suzhou, China). The posi-
tions of the virtual implants were adjusted
in three-dimensional views selected arbi-
trarily by the design software (Dental
Implant Navigation System; Digital-
health Care Co. Ltd.) (Fig. 1). To avoid
damage to the maxillary sinus and the
grafting of bone, virtual implants near
the maxillary sinuses were tilted inten-
tionally (Fig. 2). Other implants in the
posterior region of the maxilla were posi-
tioned axially. The final digital implant
treatment plans were performed.
Under routine local anaesthesia and fol-

lowing flap reflection, a Straumann im-
plant (Straumann Group, Basel,
Switzerland) was inserted in a freehand
manner in the anterior region of the max-
illa to fix the reference frame. A registra-
tion procedure was then performed.
Microscrews acted as fiducial markers to
align the digital plan with the anatomy of
the patient. After registration, the posi-
tions of the burs and CBCT images con-
taining the outlines of the virtual implants
were displayed simultaneously on the
monitor. Digital representations of the
burs were shown on the monitor in real
time during drilling (Fig. 3). Straumann
BLT implants (Straumann Group, Basel,
Switzerland) 3.3–4.1 mm in diameter and
10 mm in length were placed under dy-
namic navigation guidance. At least 25
Ncm of insertion torque was achieved
for all implants. After the implants had
been inserted, healing screws were placed
and the wound was sutured. The operation
time from local anaesthesia to wound
closure was recorded. After the implant
surgery, the patient underwent another
CBCT scan (Fig. 4).



554 Meng and Zhang

Fig. 2. Tilted implant position planning. The implant adjacent to the maxillary sinus was
intentionally tilted, as indicated by the arrow.
No patient received a provisional fixed
prosthesis immediately after implant
placement. After at least 3 months, all
patients received zirconia–ceramic im-
plant-supported multiple-unit fixed dental
prostheses.
Fig. 3. Digital representations of the burs show
Measurements

The implant treatment plan and postoper-
ative CBCT scan were aligned using an
algorithm in the implant accuracy analysis
system (ImplantPrecisionSys; Digital-
n on a monitor in real time.
health Care Co. Ltd.). This software super-
imposed the implant treatment plan and
postoperative CBCT scan using several
markers, such as the mental foramen
and the nasal spine. The software auto-
matically calculated whether the two
images were precisely aligned. Once the
alignment was finished, the software au-
tomatically fit the virtual implants to their
appearance in the postoperative CBCT
image and automatically computed the
deviation between the actual and virtual
implant positions (Fig. 5). Three types of
deviation were assessed: (1) platform de-
viation: the linear deviation in millimetres
between the actual and virtual implants at
the centre of the platform; (2) apex devia-
tion: the linear deviation in millimetres
between the actual and virtual implants at
the centre of the apex; and (3) axis devia-
tion: the deviation in degrees between the
actual and virtual implants at the centre
axis line.

Statistical analysis

The data are shown as the mean � stan-
dard deviation (minimum–maximum).
The deviation data were not normally
distributed, so the non-parametric Mann-
–Whitney U-test was applied to assess the
difference between distal intentionally
tilted implants and axially positioned
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Fig. 4. Postoperative CBCT of the tilted implant.
implants. P < 0.05 was considered sta-
tistically significant. The data were en-
tered into IBM SPSS Statistics version
25 (IBM Corp., Armonk, NY, USA) for
analysis.

Results

Twelve patients, seven female and five male,
between theagesof56and73years, received
48 implants in the posterior maxilla. Of these
48 implants, 24 were distally intentionally
tilted, while the other 24 were inserted axi-
ally under guidance with the dynamic navi-
gation system. The average operation time
for maxillary implant insertion was 81.9 �
7.9 minutes (70.0–95.0 minutes).
The average displacement errors of the

implant platform, apex, and axis for the 24
Fig. 5. Visual presentation of the deviations calc
plane; (D) three-dimensional representation.
tilted implants and 24 implants in the axial
position are reported in Table 1.
There was no significant difference in

platform deviation, apex deviation, or axis
deviation between the tilted implants and
the implants in the axial position, with P >
0.05 (Table 1).

Discussion

A dynamic navigation system was used as
a method of guidance to accurately place
intentionally tilted implants in the optimal
positions. Using dynamic navigation, the
surgeons made preoperative plans for the
optimal positions of the implants accord-
ing to the available bone volume and
prosthodontics, avoiding damage to the
critical structures and guaranteeing that
ulated by the implant accuracy analysis system: 
the inclination of the distal implants was
within a reasonable range15,16.
Studies in the literature have reported

improved accuracy with dynamic naviga-
tion. In vitro studies have reported a mean
linear error of less than 2 mm and mean
angular error of less than 5�17–19, and dy-
namic navigation has been shown to lead to
smaller angular and axial errors than the
freehand method20. In vivo, dynamic navi-
gation has also been shown to accurately
guide implant placement. For patients re-
quiring at least one implant, the navigation
system has been shown to decrease the
mean linear discrepancy for both the plat-
form and apex to less than 1.6 mm and to
decrease angle errors to approximately 4�
when compared to the freehand
method16,21–23. A meta-analysis by Jorba-
Garcı́a et al. recently demonstrated that the
mean angular deviation of dynamic navi-
gation systems was less than 4� and that the
mean entry deviation and mean apex devi-
ation were 1.03 mm and 1.34 mm, respec-
tively, resulting in greater implant
placement accuracy than freehand implant
placement and slightly less angular devia-
tion than implant placement using static
computer-assisted implantation systems24.
The dynamic navigation system used in

the present study was a new brand, but its
accuracy is comparable to that of other
dynamic navigation systems and static
surgical templates. Wu et al. showed that
the platform deviation, apical deviation,
and angular deviation in the dynamic nav-
igation group were 1.36 � 0.65 mm, 1.48
� 0.65 mm, and 3.71 � 1.32�, respective-
ly, while in the static surgical template
group they were 1.22 � 0.70 mm, 1.33 �
0.73 mm, and 4.34 � 2.22�, respective-
ly25. Sun et al. demonstrated that the an-
gular error of dynamic navigation was
3.24 � 0.36�26, while the mean angular
deviation was 4.1� for a static guide in
another study27. A systematic review and
meta-analysis of clinical studies showed
(A) coronal plane; (B) axial plane; (C) sagittal



556 Meng and Zhang

Table 1. Deviations between actual implants and virtual implants.

Intentionally tilted implants Axially positioned implants
Z P-value

 Mean � SD Max Min Mean � SD Max Min

Platform (mm) 1.3 � 0.4 2.3 0.8 1.5 � 0.5 3.1 0.7 �1.204 0.228
Apex (mm) 1.1 � 0.5 2.3 0.2 1.3 � 0.7 3.1 0.5 �0.538 0.591
Axis (�) 3.1 � 1.0 6.7 1.8 3.2 � 1.5 7.7 1.5 �0.289 0.772

Max, maximum; Min, minimum; SD, standard deviation.
that the global coronal deviation was 1.00
mm, the global apex deviation was 1.33
mm, and the angular deviation was 4.1�
for dynamic navigation28. Meanwhile, an-
other meta-analysis of the accuracy
revealed a total mean error of 1.2 mm
(1.04–1.44 mm) at the entry point and
1.4 mm (1.28–1.58 mm) at the apical
point, and a deviation of 3.5� (3.0–
3.96�) for static computer-assisted im-
plantation systems29. The accuracy of in-
tentionally tilted implants and axially
positioned implants inserted under dy-
namic navigation guidance in the present
study is similar to that reported in previous
studies.
Nevertheless, previous studies have fo-

cused on the accuracy of axially posi-
tioned implants, and few studies have
demonstrated the accuracy of intentionally
tilted implants under the guidance of dy-
namic navigation. This study showed that
there was no significant difference in de-
viation between the 24 tilted implants and
24 implants in the axial position, and that
the accuracy of the tilted implants was
similar to that reported in the previous
literature for axial implants with dynamic
navigation, which indicates that inten-
tionally tilted implants were as accurate
as axially positioned implants under the
guidance of a dynamic navigation system.
However, the maximum axis deviations

were relatively large in this study. The
maximum deviation of the axis reached
6.7� for tilted implants. There are three
possible reasons for the deviations. First,
shifts in preoperative CBCT data, which
resulted from head motion of the patient
during the CBCT scan, decreased the ac-
curacy of the digital models calculated
from CBCT data for implant planning
and navigation. Second, the manual
matching procedure after the operation
possibly resulted in errors because of the
patients shifting in the postoperative
CBCT scans and system errors in the
software. Third, a lack of surgeon experi-
ence with operating the navigation system
may have led to errors. Research on learn-
ing curves has indicated that at least five
training courses for navigation systems
and strict compliance at each step are
necessary for dentists to ensure patient
safety and reliability in implant proce-
dures30. Another study showed that the
difference in accuracy between surgeons
with previous experience with dynamic
navigation and surgeons without experi-
ence with dynamic navigation can reach a
minimum after 20 cases22.
Static surgical templates or implant

guides do not allow surgeons to observe
or adjust the positions of burs during
surgery. In contrast, dynamic navigation
provides real-time images for surgeons to
observe and adjust the positions of burs.
Furthermore, dynamic navigation was
found to facilitate the placement of inten-
tionally tilted implants in the posterior
region of the maxilla without templates
in the patient’s mouth, which improved
patient comfort. A considerable disadvan-
tage of dynamic navigation is the long
time required for registration. The regis-
tration time was approximately 10–15
minutes in the patients included in this
study. The development of optimized sys-
tems and greater experience with the sys-
tem may reduce the registration time.
This retrospective study was prelimi-

nary and included few cases. Prospective
research including more cases is required
in the future. Immediate loading with
dynamic navigation in edentulous patients
as well as the cost-effectiveness of the
system should be analysed in the future.
This retrospective clinical analysis in-

dicated that in cases without sufficient
vertical bone in the posterior maxilla, a
dynamic navigation system can be used as
a method of guidance to place intentional-
ly tilted implants as accurately as axially
positioned implants, thereby preventing
damage to the maxillary sinuses and the
need to graft bone.
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