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Abstract: The widespread occurrence of bacterial infections and their increased resistance to antibiotics
has led to the development of antimicrobial coatings for multiple medical implants. Owing to
their desirable properties, gold nanoparticles (AuNPs) have been developed as antibacterial agents.
This systematic investigation sought to analyze the antibacterial effects of implant material surfaces
modified with AuNPs. The data from 27 relevant studies were summed up. The included articles were
collected from September 2011 to September 2021. According to the retrieved literature, we found that
medical implants modified by AuNPs have good antibacterial effects against gram-positive and gram-
negative bacteria, and the antibacterial effects would be improved by near-infrared (NIR) radiation.
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1. Introduction

Implanted medical devices, such as catheters, cardiovascular stents, orthopedic and dental
implants, are commonly used to reduce pain, and improve function and appearance, and can
have a significant impact on physical and mental health. However, these devices breach the soft
tissue barrier that protects the body from external factors, thereby increasing the risk of bacterial
infection, potentially leading to morbidity and mortality [1]. The risk of infection occurs in
almost all biomaterial applications, with implant infections being the most common ranging
from 0.08% to 40%, depending on the implantation site and time, and the physical health of
the patient. Among them, the infection rate related to cardiac devices is the highest [2–4].

The mainstay of treatment post-infection is antibiotic therapy. However, as extensively
documented, the problem of antibiotic resistance worldwide is increasing, with drug-
resistant strains most commonly emerging as a result of antibiotic use in hospitals [5,6].
Therefore, the treatment of device-related infections is increasingly difficult and costly
due to long-term antibiotic treatment and the emergence of resistant bacteria. Surgical
intervention and removal of devices may be required in cases where antibiotics cannot
resolve the infection. However, revision surgeries can carry different levels of risk; one
study [7] showed that revision surgery for periprosthetic joint infection was associated
with a five-fold increase in mortality compared with revision surgery for aseptic failure.

In addition to antibiotics use, many methods have emerged to tackle the problem of
bacterial infections associated with medical implants; for example, modifications to the ba-
sic composition of the implant or the surface of the implant, such as antimicrobial peptides
(AMPs) [8,9], quaternary ammonium compounds, cationic materials, metal ions [10], nanoparti-
cles, and photodynamic therapy, have been developed to prevent infection. The unique amino
acid sequences of AMPs enable them to insert into and decompose on the surface of bacteria,
thus, killing drug-resistant bacteria [11]. However, AMPs also have several disadvantages,
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including poor biodistribution, frequent toxicity, hemolytic activity, rapid degradation, and
other side effects [12–14]. A recurring reason for the failure of AMPs to reach the market is that
they do not show better activity than currently available antibiotics for specific indications [15].
Many quaternary ammonium compounds not only have antibacterial effects but also have
antifungal, antiviral, and antimatrix protease capabilities. A promising strategy for preparing
antimicrobial biomaterials is to incorporate quaternary ammonium moieties into polymers;
however, these technological developments can also pose challenges in terms of toxicology and
antimicrobial resistance [16]. Positively charged long-chain polymers show potent bactericidal
activity by penetrating bacterial membranes [17] and are widely used in drug delivery, gene
delivery, and tissue engineering [18]. When designing cationic polymers, it is important to
consider methods of overcoming subcellular barriers, including in vivo escape and nuclear
transfer. The success of cationic polymer is hindered by the non-degradability and toxicity of
some formulations [19]. Inorganic nanoparticles with a large specific surface area, size control,
flexible surface functionality, relatively good biocompatibility, and additional properties, such
as photocatalysis, photothermal effects, and reactive oxygen species stimulation, show good
antibacterial potential [20,21]. Nanoparticles are less likely to promote bacterial resistance than
antibiotics, because nanoparticles can contact directly with bacterial cell walls [22].

Among inorganic nanomaterials, the research on AuNPs is increasing, and their
advantages as antibacterial agents include: highly biosafe; can be designed to regulate gold
nanomaterial excretion/metabolism; different molecules can be used to modify the surface;
can enhance antibacterial effects by manipulating size, shape, and surface properties; and
can seldom induce bacterial resistance [23]. Moreover, drug-coupled AuNPs showed higher
and longer antibacterial effects [24,25]. In this review, we investigated the applications of
medical implants and summarized the research on the antibacterial properties of AuNPs.
We focused primarily on the possible modification method on medical implants, the
antibacterial effects of implant materials modified by AuNPs, the main pathogenic bacteria
which they against, and their antibacterial mechanism.

2. Methods

This review was conducted in accordance with the PRISMA systematic review state-
ment guidelines [26]. Figure 1 shows a flowchart describing the selection, identification,
and screening methodology for the studies of interest in this review article.
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2.1. Electronic Resources/Bibliographic and Full Text Databases

For the research strategy, the following databases were used: (i) PubMed; (ii) Web
of Science; (iii) Embase. Keywords were used as follows: “gold” OR “gold” (MeSH
Terms) OR “gold particles” OR “gold particles” (MeSH Terms) OR “gold nanoparticles” OR
“gold nanoparticles” (MeSH Terms) AND “implant” OR “implant” (MeSH Terms) AND
“antibacterial” OR “antibacterial” (MeSH Terms).

2.2. Study Selection

The inclusion criteria were as follows: (1) the research materials were primarily used
for medical implants, (2) AuNPs were applied to implants in different ways, such as
by changing the basic composition, surface modification, and surface modification in
combination with other components, (3) AuNPs were used for antibacterial purposes. The
exclusion criteria were as follows: (1) the study was a duplicate, (2) the study materials
were not applied to medical implants, (3) AuNPs were not used, (4) papers were reviews
or systematic reviews.

The first step in the research selection strategy was to identify relevant papers, we
selected 226 documents from Web of Science, 157 from PubMed, and 59 from Embase. All
retrieved articles were selected based on their titles and abstracts, and articles that were not
relevant to the subject area were excluded, leaving 103. Potentially suitable articles were
evaluated according to the inclusion and exclusion criteria. For more detailed screening, the
full texts of the remaining articles were evaluated. Finally, 27 articles that met the eligibility
criteria were selected and discussed.

2.3. Data Extraction and Synthesis

Data relating to the characteristics of the included studies were extracted by one reviewer
and verified by another reviewer (Table 1).

Table 1. The antibacterial effects and other effects of implant materials modified by various gold
nanoparticles.

Materials Application Au Size Au
Concentration

External
Stimulation Antibacterial Effect Other Effects Ref.

nAu-Hydrogel Wound
dressings <20 nm 1 mM HAuCl4

solution -

Considerable
antimicrobial activity
for S. aureus and
P. aeruginosa.

The thickness of
capsule is higher
(∼80–100 µm) in
the case of
AC-nAu.

[27]

Au@PDA
nanocomposite
Hydrogel

Wound
dressings

Length, 40 nm;
diameter,
10 nm

42 mg/g of
Au@PDA

Near-infrared
(NIR),
2 W cm−2

808 nm, 5 min

98% killing efficiency
against S. aureus and
E. coli.

Promote wound
healing of
infected full-skin
defect.

[28]

AuNRs_mPEG
Hydrogel

Prosthetic joint
infection
replacement

Length,
110 nm;
diameter,
30 nm

300 ppm NIR, 1 W cm−2

808 nm, 20 min

20 min of PTT following
the initial 2 h D-AA
treatment is sufficient to
remove S. aureus biofilm.

- [29]

TNTs/AuNPs Dental
implants 20 nm - -

The average antibacterial
efficiency of TNT-Au2
sample is 97.34%
(P. gingivalis) and 92.13%
(F. nucleatum).

High anti-
inflammatory
efficiency.

[30]

TNTs/AuNPs Bone defect
implants - 5.3 at. %

8.5 at. % -
An antibacterial effect
towards both S. aureus
and E. coli.

Promote initial
adhesion, the
spreading and
proliferation of
rBMSCs.

[31]
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Table 1. Cont.

Materials Application Au Size Au
Concentration

External
Stimulation Antibacterial Effect Other Effects Ref.

TNTs/AuNPs Dental
implants -

6.52 at. %
2.01 at. %
1.59 at. %

-

Enhanced antibacterial
activity with Au content
increasing, >99%
inhibition against
multispecies biofilm.

Promote
fibroblast
adhesion,
proliferation,
and migration.

[32]

TNTs/AuNPs Bone defect
implants

10 nm and
20 nm 15–40% -

Long-term antibacterial
characteristics against
S. aureus.

Good
cytocompatibility. [33]

TNTs/Ag
and Au NPs

Bone defect
implants 5–20 nm 0.30% -

Ag and Au have
a synergistic effect on
E. coli.

- [34]

TNTs/AuNRs Bone defect
implants

Diameter,
10 nm; aspect
ratio, 3.83

<12 wt % NIR, 200 mW,
830 nm, 30 s

Tetracycline was released
effectively by NIR,
showed the annihilation
effect of Streptococcus
mutans.

- [35]

TNTs/AuNRs Bone defect
implants

Diameter
10 nm 2.8 nM NIR, 1 W cm−2

850 nm, 30 min

Vancomycin released
from the coating induced
by NIR, resulting in
a clear inhibition zone to
Staphylococcus
epidermidis.

- [36]

TNTs/AuNRs Bone defect
implants

Diameter,
35 nm; length,
100 nm

5.03 wt % NIR, 200 mW,
830 nm, 30 min

The zone index of
S. mutans grown with
2 wt% TC/PCL-coated
GNRs-TNT following
NIR laser irradiation for
1 min (16.25 ± 1.39 cm)
was significantly higher.

- [25]

Ti-AuNRs Bone defect
implants

Diameter,
11 nm; length,
50 nm

0.02 M,
0.12 mL
HAuCl4
solution

NIR,
0.5 W cm−2,
808 nm, 20 min

The antibacterial activity
of Ti-GNR-NIR group is
highest in E. coli,
P. aeruginosa, S. aureus,
and S. epidermidis.

An ignorable
toxicity to
MC3T3-E1 cells.

[37]

Network
Films-AuNCs

Bone defect
implants - 3 mM HAuCl4

solution - Disrupt the MRSA and
ESBL E. coli membrane.

No obvious
tissue defect. [38]

Surgical
mesh-AuNRs

Hernia repair
surgical mesh - 250 GNRs/µm2

NIR,
0.435 W cm−2,
810 nm, 30 s

Alter the integrity
of biofilm. - [39]

PDMS-
ZnO/Au

Urinary
catheters -

10 mg/mL
HAuCl4
solution

Visible light

A killing rate of 65.5% in
the dark and >99.9%
under visible light
irradiation and obstruct
the attachment of
E. coli bacteria.

- [40]

Bone
cement-AuNPs

Total knee
arthroplasty
and total hip
replacement

10–20 nm
0.25 wt %
0.5 wt %,
1 wt %

-

Live bacteria reduced up
to 54% and 56% for
MRSA and Pseudomonas,
respectively, on bone
cement samples obtained
by adding 1% by weight
of AuNPs.

0.25 wt% AuNPs
improved the
punching
performances,
without altering
the compressive
properties of
bone cement.

[41]

PU-AuNPs Menisci -
0.16 wt %
0.32 wt %
0.64 wt %

-
0.64 wt % inhibiting
99.99% of Klebsiella spp.
and S. epidermidis.

Do not exhibit
toxic effects on
fibroblast cells.

[42]

CS/PVA/GO/
HAP/Au
nanocomposite

Bone tissue
engineering
scaffolds

- - -

An increase of 3–7 mm
zone of inhibition was
seen in Cs/PVA/GO/
HAP/Au film.

High hemocom-
patibility, not
toxic, active
differentiation of
mMSCs.

[43]
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Table 1. Cont.

Materials Application Au Size Au
Concentration

External
Stimulation Antibacterial Effect Other Effects Ref.

PDMS-TA-
PEG-Au

Biomedical
devices 40–70 nm -

NIR,
1.5 W cm−2,
808 nm, 10 min

Resists MRSA bacterial
adhesion, kills S. aureus
and E. coli bacteria
in vitro and in vivo.

Biocompatible
with low
cytotoxicity.

[44]

PU-Au-PEG Hernia repair
Diameter,
10 nm; length,
40 nm

10.84 wt %
12.52 wt %

NIR,
1.2 W cm−2,
808 nm, 10 min

Kills P. aeruginosa and
S. aureus, inhibits biofilm
formation, eliminates
infection of the hernia.

Good
biocompatibility. [45]

PVA-AuNS Wound
dressings - 9 × 10−3 M

NIR,
0.3 W cm−2,
800 nm, 30 min

S. aureus and E. coli film
can be killed if laser
treatment as short as
30 min is applied.

- [46]

Nanofibrous
mats-AuNPs

Tissue
engineering
scaffolds

20 nm - -
Better antibacterial effect
against S. aureus than
E. coli.

- [47]

PDMS-AuNPs-
GO-NH2

Urinary
catheters 1.4 nm - -

The bactericidal efficiency
of Au-GO-NH2 modified
PDMS > 99.99%.

- [48]

HAp/AuNPs Bone defect
implants - - -

Strong antimicrobial
activity (cell
mortality > 95%) against
E. coli and S. aureus.

Approximately
90% viability at
MIC strength of
the nanoparticles.

[49]

58S bio-
glasses/AuNPs Drug delivery <10 nm 0.1 wt.%

1 wt.% -

Enhances this effect on
the S. aureus but not on
the E. coli, the
antibacterial effect is
dose-dependent.

- [50]

Mg alloy-
AuNPs/PD

Bone fixation
plates, screws,
wires, pins,
and stents

150 nm - -

The coating with Ag
and Au NPs showed
the highest
antibacterial effects.

Improved the
corrosion
resistance of the
bare alloy.

[51]

NiTi-
AuNPs/CS

Orthopedics
and dentistry - - -

AuNPs/CS/NiTi shows
highest growth inhibition
for S. aureus.

High corrosion
resistance at
all pHs.

[52]

3. Results
3.1. Implant Materials for Medical Applications Studied in Selected Articles

The substrate materials modified in the 27 articles mainly included metals, polymers,
and bioactive materials (Figure 2). There were ten articles on the surface modification of pure
titanium (Ti), including eight studies on titania nanotube (TNT) modification [30–36] and
two studies on titanium surface modification [37,38]. Two studies [51,52] presented AuNPs
that were used to improve the antibacterial effects of magnesium (Mg) alloys and nickel
titanium. Three hydrogel composites doped with AuNPs have been investigated [27–29].
In nine of the studies [39–46,48], AuNPs were used to modify polymers, including poly-
methyl methacrylate (PMMA)-based bone cement, polyurethane (PU), polypropylene, poly-
dimethylsiloxane (PDMS), and polyvinyl alcohol (PVA). There were two studies [49,50]
regarding bioglasses and hydroxyapatite. There was one article on AuNP modifications for
nanofibrous mats [47].
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Figure 2. The varieties and numbers of substrate materials in publications.

3.2. The Modification Methods of AuNPs to Implant Materials

The modification methods of gold nanoparticles to implant materials mainly include
immersion, sputtering, self-assembly, mixing. After implant materials modification, gold
nanoparticles can be present on the surface of the implant materials or inside the implant
materials. The locations of gold nanoparticles are illustrated in Figure 3. The AuNPs or gold
nanorods (AuNRs) can be directly coated onto titanium dioxide nanotubes, pure titanium,
hydroxyapatite particles, or polymers using simple immersion, sputtering methods or
self-assembly methods. Furthermore, titanium dioxide nanotubes and PDMS can be soaked
in a chloroauric acid solution, and the AuNPs obtained by reduction were added to the
surface of the material under UV light. On the other hand, the gold nanoparticles can be
mixed into implant materials. Different amounts of AuNPs can be directly mixed with
polymers to form composites. Besides, chloroauric acid solution can be in situ reduced
by chitosan to gold nanoparticles and mixed into form hydrogel composites. It is worth
noting that in the coating preparation process, in order to improve the binding ability and
therapeutic effect of the coating, the AuNPs or the surface of the substrate materials may
need to be pretreated by chemical reaction, such as Polyethylene glycolation (PEGylation).
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3.3. Application Sites and Antibacterial Research of Medical Implants in Selected Articles

Most modified medical implants are used for bone defect treatments [31,33–38,43,49],
dental implants [30,32], drug delivery [25,50], prosthetic joints [29,41,52], and medical de-
vices [44,51]. Modified hydrogels are commonly used in wound dressings [27,28]. Polymeric
materials are used in catheters [40,48], hernia repairs [39,45], and menisci [42]. The key ap-
plication sites presented across the 27 papers analyzed are shown in Figure 4. Gram-positive
bacteria, including Staphylococcus aureus and S. epidermidis, and gram-negative bacteria,
such as Escherichia coli and Pseudomonas aeruginosa, are used in most antibacterial assays.
According to the different infection sites, some researchers have selected targeted bacteria
(Figure 4), such as Streptococcus mutans [25,35], Porphyromonas gingivalis [30,32], Klebsiella
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spp. [42], and Enterococcus faecalis [53]. The emergence of drug-resistant bacteria [38,41,44],
such as methicillin-resistant Staphylococcus, is an important driving force for researchers
seeking alternative antibacterial methods to antibiotics.
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With increasing concentration, the antibacterial capacity increased. However, as the
dose increases, gold nanoparticles may adversely affect the properties of the substrate
materials. By harnessing the photothermal effect of gold nanoparticles, drug release, such
as Vancomycin [36] or Tetracycline [25,35], could be controlled to synergistically improve
antimicrobial effects. Moreover, when the temperature exceeds 50 ◦C, bacterial proteins
denature and bacteria can be killed.

3.4. The Antibacterial Mechanism of Gold Nanoparticles

The implant materials modified with gold nanoparticles exhibit good antimicrobial
effects, largely thanks to gold nanoparticles. The antimicrobial mechanism of gold nanopar-
ticles is shown in Figure 5. Gold nanoparticles electrostatically adsorb to the bacterial
membrane and can interact strongly with lysine present on the bacterial membrane of
gram-positive bacteria [28,50], where irreparable pores appear in the bacterial membrane
and cause bacterial death. Moreover, after entering into bacteria, gold nanoparticles reduced
adenosine triphosphate (ATP) levels and led to decreased metabolism [54]. Gold nanoparti-
cles promote the photocatalytic activity of oxides, such as titanium dioxide [32] and zinc
oxide [40], and produce peroxides, hydroxyl groups, and high concentrations of oxygen [30],
which generate excess ROS [31] and cause bacterial collapse. Under near-infrared light
(NIR), gold nanoparticles have excellent photothermal effects. When temperatures are above
50 ◦C, the bacteria are ablated due to protein deformation.
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3.5. Biocompatibility of Implant Materials Modified by Au Nanoparticles

Of the included articles, most also investigated the biocompatibility of modified
implant materials. Cytotoxic and inflammatory responses have been previously described;
however, none of the modified surfaces exhibited significant cytotoxicity in vitro. Most
AuNPs were approximately 20 nm in size. The addition of 5% gold content to the surface
of TNT showed the best anti-inflammatory effect [30], promoted initial adhesion, and
enhanced the spreading and proliferation of rat bone marrow mesenchymal stem cells
(rBMSCs) [31], evenly stimulating the ALP activity of rBMSCs [31,43]. However, one study
showed that chitosan hydrogels with AuNPs led to a higher thickness of the fibrous tissue
capsule (approximately 80–100 µm).

4. Discussion
4.1. Antibacterial Importance of Medical Implants

Biofilm formation in biomedical implants and devices is a serious issue. The neg-
ative effects of biofilms have been well studied and documented in various biomedical
settings [55]. The long-term use of biomaterials in the body is threatened by bacterial
adhesion and proliferation on the implant surface, leading to biofilm formation in some
cases; this can lead to local infection and even implant failure, which in the worst cases
leads to patient death [56,57].

Implant-related infections trigger local tissue responses, leading to acute and chronic
inflammation, foreign body reactions, granulation tissue formation, and fibrous encapsulation.
These events may ultimately drive microbial colonization and implant infection. Implant
infections are therefore characterized by complex interactions between biomaterials and the
host, especially the host immune response. Biofilm formation is often responsible for the
development of nosocomial infections. Once a biofilm has formed, it protects the adherent
bacteria from host defense systems and fungicides through a variety of mechanisms. Biofilms
can form on virtually any material present in the operating room, and preventing their
formation is fundamental to patient survival [58].

The systemic application of antibiotics is currently the primary treatment modality for
infection, but the overuse of antibiotics has led to the microevolution of resistant bacteria.
Some bacterial strains are now showing resistance to all commonly used antibiotics; for
example, methicillin-resistant golden yellow Staphylococcus has developed resistance not
only to methicillin but also to macrolides, aminoglycosides, lincosamides, and chlorampheni-
col [59]. By making the implant surface antimicrobial, the adverse effects of the systemic
use of antibiotics and the delivery of large doses to implant sites can be avoided [60]. The
key to limiting the spread of infection after the installation of medical implants is to prevent
bacterial colonization of biomaterial surfaces. The properties of the material determine the
general mechanical behavior, and the biological activity is closely related to the surface prop-
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erties [57]; therefore, the improvement of surface functionalization is important in improving
the biological functions of medical implants, such as their antibacterial properties.

4.2. The Characteristics of AuNPs Determine the Antibacterial Effects

The advantages of AuNPs as antibacterial agents include the following: (1) Gold
nanomaterials can be endowed with high biosafety because gold itself is chemically inert,
and the absorption/metabolism of gold nanomaterials can be regulated by the material
design. (2) The antibacterial effects of AuNPs can be maximized by the chemical ma-
nipulation of properties, such as size, shape, and surface, by modifying the surface with
different molecules. (3) Gold nanomaterials induce bacterial resistance less frequently than
standard antibiotics [23]. (4) Additionally, gold nanoparticles can be functionalized by
natural antioxidant, biological ligands, various organic molecules, and dendrimer. The
functionalized gold nanomaterials have several advantages in surface charge, size, bacterial
receptor targeting, biocompatibility, and effective internalization [61]. In our systematic
review, we summarized the antibacterial effects of medical implants modified with AuNPs,
the current feasible modification methods, the types of modified implant materials, the
antibacterial effects on microorganisms, and the potential limitations of this technology.

Titanium and titanium alloys are important in orthopedic implants. Titanium dioxide
nanotubes can be formed on the surface of titanium using anodizing treatment. Titanium
dioxide nanotubes (TNT) are similar to natural bone matrices because of their nanoscale
structure and the use of drugs. Pristine TiO2 does not possess antibacterial capabilities
unless catalyzed by ultraviolet (UV) light, which cannot penetrate tissue to reach implants
in vivo [33]. Light in the near-infrared region (650–900 nm) has a lower rate of optical
adsorption by body components, such as water, and would therefore allow deep tissue
penetration without significant damage [36]. Infrared light is more efficient than visible
light because it has better skin penetration [35]. When TiO2-NTs are decorated with AuNPs,
their photothermal effect of AuNPs enables them to achieve enhanced photocatalysis [30,32].
There are also studies showing that without near-infrared laser excitation, titanium dioxide
nanotubes modified by AuNPs have good antibacterial effects on Streptococcus gordonii,
Porphyromonas gingivalis, and Fusobacterium nucleatum, and the in vivo results showed a
reduced inflammatory response. Further, research has shown that the surface of AuNP-
modified TiO2 nanotubes exhibits a superior antibacterial effect on E. coli under NIR
laser irradiation.

AuNPs with special designs, such as nanoshells and nanorods, strongly absorb light in
the near-infrared (NIR) spectrum and convert it to heat. Research [62] elaborated that gold
nanoparticles have the ability to localize light to sub-wavelength regions. Additionally,
under light, gold nanoparticles produce a field-enhancing effect. In addition, the optical
character of nanoparticles is affected by its size, shape, and dielectric environment [63]. The
peak magnitude of the field for the 30 nm particles is larger than that of 60 nm particles. The
particle shape strongly affects the plasmon resonance, which shifts to red as the particles
becomes more oblate. This photothermal effect is due to the surface plasmon resonance
(SPR) effect of gold nanoparticles under the action of near-infrared [64].

AuNPs are mainly in round, rod, nanostar, or nano-flower formations. Different shapes
have different antibacterial effects, and it has been suggested that nanostars have the highest
antibacterial activity [65]. However, with regards to implant material modifications, the
particle shape was not shown to have a significant antibacterial effect, but this might be
due to the fact that these studies did not only consider AuNPs as the factors that act on
microorganisms. In a previous study [65], the results showed that the antibacterial effect
depended on the number of AuNPs. A small increase in the number of AuNPs enhanced
the anti-biofilm activity of the nanocomposite, inhibiting 99.99% of Klebsiella spp. and
Staphylococcus epidermidis [42]. However, with regards to TiO2 nanotubes, we found that
AuNP content of less than 10 wt% could spread evenly on the titanium surface, and when
the content was too high, the nanoparticles tended to aggregate [33]. For AuNPs mixed
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into implant materials, the dose affects the basic mechanical properties of the substrate
material [41] and the increase in dose does not affect cell compatibility.

From the included studies, we found variations in shape, size, and the content of
AuNPs. We found that shape of AuNPs was not the main factor influencing the antibacterial
effect. In most studies, concentrations below 10 wt% showed antimicrobial effects, but this
relied on synergistic effects with other components. AuNPs can be functionalized by specific
factors to achieve targeted and laser thermal ablation to kill bacterial [66]. In addition, the
antibacterial effect of functionalized AuNPs is related to particle aggregation [67,68], and
the tunability of optical response and catalytic activity is achieved through the controllable
aggregation of functionalized AuNPs. The antibacterial effect of AgNPs is well known, and
the addition of AuNPs enables the uniform dispersion of silver/AuNPs and a synergistic
effect [51]. AuNPs have also shown a synergistic effect with antibiotics and cations against
the gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia
coli [27,52], as well as improving drug release [69].

4.3. Influence of NIR on Antibacterial Effects of AuNPs

In the 27 included articles, we found that studies that presented thermal or photocat-
alytic effects by using NIR on AuNPs. Most AuNP therapeutic applications are based on
their ability to generate tunable heat upon exposure to NIR radiation, which is helpful in
both NIR-responsive cargo delivery and photothermal/photodynamic therapies [70,71].
AuNPs exhibited remarkable absorption in the NIR region.

Protein activity is affected by protein unfolding and aggregation in the temperature
range 43–45 ◦C, but in the case of NIR radiation, the temperature does not induce these
modifications at the cellular level [72]. It has been reported that, above 50 ◦C, the enzymes,
proteins, and lipids in bacteria become denatured and metabolism is disordered, eventually
resulting in bacterial death [73].

NIR light has been shown to travel at least 10 cm through breast tissue, and 4 cm
of skull/brain tissue or deep muscle using microwatt laser sources [74]. This indicates
that NIR can effectively excite medical devices implanted in the body, without resulting in
damage to the patient.

4.4. Antimicrobial Mechanism

The antibacterial effect is related to the morphology [75] and bacterial membrane [76]
of bacteria, and the different forms of bacteria make the contact area between bacteria
and the sample surface different. The composition of the cell wall of gram-negative
bacteria is different from that of gram-positive bacteria; the peptidoglycan layer in the
cytoderm of gram-positive cells is much thicker than that of gram-negative cells, and it is
therefore batter suited to resisting influx of metal ions [77]. Lysine is the most abundant
amino acid in gram-positive bacteria [78] and is characterized by a –CH2CH2CH2NH2
group that strongly interacts with AuNPs; this may be detrimental to gram-positive cells.
After contact with bacteria, AuNPs pass through the outer membrane and peptidoglycan
layers of bacteria, generating reactive oxygen species (ROSs) [79], which can interrupt
the extracellular electron transfer pathway that contacts bacteria, ultimately affecting
bacterial growth.

On the other hand, it is related to the surface properties of the materials [75]. The phys-
ical action of nanopillars can cause bacterial deformation, and the PEGylated hydrophobic
surface reduces bacterial adhesion [45]. In the example of TNT-Au modification [31–33],
the addition of AuNPs can expand the light absorption range, improve photocatalytic
activity, generate more hydroxyl groups and superoxides, and increase the biosafety of the
material. Nanoparticles have a larger surface area for interaction to enhance the bactericidal
effect than larger size particles, and with the addition of AuNPs, they are able to bind to
the functional groups of proteins, resulting in protein inactivation and denaturation. The
antibacterial mechanism of nanoparticles is dependent on their sizes [80]. Because of their
small size [81], AuNPs can easily penetrate the bacterial wall, and the DNA molecules con-
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dense and lose their ability to replicate, leading to cell death. In addition, the penetration
of bacterial cell walls by AuNPs causes enzyme inactivation, the production of hydrogen
peroxide, and, ultimately, bacterial cell death [82].

AuNPs produce photothermal effects under NIR irradiation, and the increase in
temperature produces thermal ablations on bacteria, especially Gram-negative bacteria.
A study [83] showed that high temperatures can affect Escherichia coli outer membrane
protein folding. An increase in temperature leads to protein denaturation [84] and the loss
of enzyme activity, inhibiting bacterial growth [72]. The photothermal effect of gold also
assists in the release of antibiotics added to the surface of the material [35,36], increasing
antibacterial efficacy and long-term antibacterial effects [80].

4.5. Biocompatibility of Implant Materials Modified by AuNPs

Biomaterials come into contact with cell surfaces, tissues, organs, and blood com-
ponents. The toxicity assessment of implant materials is a principal issue for potential
medical applications [85]. Gold nanoparticles have good biocompatibility at the appropri-
ate concentration and size, and excessive concentrations will cause toxicity. Some literature
illustrated that gold nanoparticles with reasonable size and concentration have good cy-
tocompatibility [33,37,42]. The results of cytocompatibility studies showed that AuNPs
(of approximately 20 nm) did not cause HDF-f cell death at a maximum concentration of
300 µM [86]. The 20 nm AuNPs exhibited the lowest uptake by reticuloendothelial cells
and the slowest clearance from the body [87]. As the size of the AuNPs increased, the
permeability and diffusion coefficients decreased [88].The results of an in vivo experiment
showed that AuNPs of 3, 5, 50, and 100 nm did not show harmful effects, whereas AuNPs
ranging from 8 to 37 nm induced severe sickness in mice at a dose of 8 mg/kg per week [89].
Other studies showed that 10 nm nanoparticles [90] and 15 nm nanoparticles [91] both
showed the most widespread organ distribution.

In addition, in antimicrobial strategies for bone defect restoration and dental implants,
AuNPs exhibit good biological activity, such as in the promotion of fibroblast adhesion,
proliferation, and migration [32]. Moreover, AuNPs can stimulate osteogenic differentiation
of bone marrow mesenchymal stem cells (BMSCs) [31,43] and promote the bone-forming
effect of implant materials [92]. Osteogenesis is significantly promoted when combined
with bioactive materials [43]. Furthermore, gold nanoparticles exhibit anti-inflammatory ef-
fects [30,38,45]. In wound-dressing antibacterial applications, AuNPs exhibit good collagen
fiber regeneration to promote wound healing [28].

5. Conclusions

In conclusion, gold nanoparticles could modify implant materials by sputtering, im-
mersion, self-assembly, mix, etc. Gold nanoparticles have good effective against bacteria,
and this effect can be enhanced by an NIR laser. The antimicrobial effect of gold nanopar-
ticles was dose-dependent. Considering the surface properties of the material, the gold
nanoparticle content is preferably not more than 10%; approximately 5% is the most favor-
able for the inflammatory response. Gold nanoparticles with a size of approximately 20 nm
are the most conducive to biocompatibility. Based on the good biological properties of gold
nanoparticles, they have broad prospects in the field of antibacterial researches of medical
implant materials.
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