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1  | INTRODUC TION

Autophagy is a highly conserved catabolic process in which cellular 
components such as misfolded proteins or damaged organelles are 
sequestered into lysosomes for degradation.1,2 The target materi-
als of autophagy are recycled to create new cellular structures, or 
alternatively used as a source of energy.3 Autophagy can be stim-
ulated by multifarious environmental stresses including hypoxia, 
nutrient deprivation, oxidative stress, or intracellular pathogens. It 
is essential for cellular homeostasis, which accurately responds to 
stimuli in the absence of energy or nutrients to prevent cell dam-
age.4 It also participates in various biological processes, such as cel-
lular differentiation, cell function, and defense against pathogens.5 
In addition, autophagic dysfunction is associated with multiple 

diseases such as autoimmune disease, cancer, diabetes, and oral 
disease.2,6

Periodontal disease (PD) is a chronic inflammatory disease af-
fecting tooth-supporting tissues, including gingiva, periodontal lig-
ament, and alveolar bone. It is common in populations worldwide 
and highly prevalent in adults.7 Microorganisms of the dental plaque 
are considered to be the initial pathogenic factor of PD. Disease 
occurs when the balance between pathogens and the host immune 
response is disrupted.8 The host overcorrection to microbial infec-
tion results in a local inflammatory state, leading to the progressive 
destruction of periodontal ligament and alveolar bone.9,10 In this 
review, we examine autophagy and its significance in periodontal 
disease. We begin by briefly reviewing the autophagy machinery, 
followed by a review of updated information on the potential role of 
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Abstract
Autophagy is an evolutionarily conserved process essential for cellular homeostasis 
and human health. As a lysosome-dependent degradation pathway, autophagy acts 
as a modulator of the pathogenesis of diverse diseases. The relationship between au-
tophagy and oral diseases has been explored in recent years, and there is increasing 
interest in the role of autophagy in periodontal disease. Periodontal disease is a prev-
alent chronic inflammatory disorder characterized by the destruction of periodontal 
tissues. It is initiated through pathogenic bacterial infection and interacts with the 
host immune defense, leading to inflammation and alveolar bone resorption. In this 
review, we outline the machinery of autophagy and present an overview of work on 
the significance of autophagy in regulating pathogen invasion, the immune response, 
inflammation, and alveolar bone homeostasis of periodontal disease. Existing data 
provide support for the importance of autophagy as a multi-dimensional regulator in 
the pathogenesis of periodontal disease and demonstrate the importance of future 
research on the potential roles of autophagy in periodontal disease.
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autophagy in periodontal pathogens, the immune response, inflam-
mation, and alveolar bone homeostasis.

2  | AUTOPHAGY T YPES AND MACHINERY

Three primary types of autophagy have been described: microau-
tophagy, chaperone-mediated autophagy, and macroautophagy. The 
types of autophagy mainly differ in the mode of cargo delivery to 
the lysosome. In microautophagy, the cargo interacts directly with 
the lysosome surface and is subsequently cleaved by proteases.11 
Microautophagy is thought to be involved in long-lived protein 
turnover in mammalian cells.12 Chaperone-mediated autophagy is a 
highly selective type of autophagy that relies on translocation of per-
tinent soluble cytosolic proteins across the lysosomal membrane.13 
In the strictest and best characterized form of autophagy, “macro-
autophagy” (referred to hereafter as autophagy), recycling of cel-
lular materials is dependent on specialized cytosolic vesicles under 
the control of autophagy y-related (ATG) genes.14 The autophagic 
process can be divided into various steps: initiation, elongation, en-
closure, fusion with lysosomes, and degradation (Figure 1). The ini-
tiation step begins with the formation of phagophores; both ends of 
the membrane of phagophores elongate to engulf and enclose the 
targeted materials within double-membrane autophagosomes.14,15 
The maturation of autophagosomes occurs when they are fused with 
lysosomes to become autolysosomes. The inner membrane of au-
tolysosomes and engulfed materials are degraded by lysosomal acid 
proteases.4,14

The molecular machinery of autophagy was discovered in yeast 
genetic studies in which more than 30 ATG genes have been iden-
tified.16 Many orthologues of ATG genes have been identified in 

mammalian cells. The corresponding gene products are required for 
the dynamic processes of autophagy. Under stress conditions, the 
mammalian target of rapamycin (mTOR) is inactivated, which conse-
quently activates ATG1 kinase activity.17 UNC-51-like kinase (ULK)/
ATG1 is a key protein that initiates autophagy by forming a complex 
with ATG13, ATG101, and focal adhesion kinase family interacting 
protein of 200 kD (FIP200) to induce autophagic signals.4,18 The 
class-III phosphatidylinositol 3-kinase (PI3K) complex composed of 
Beclin1/ATG6, vesicular protein sorting (Vps) 34, Vps15, and ATG14, 
induces the production of phosphatidylinositol-3-phosphate to re-
cruit effectors required for the formation of autophagosomes.19,20 
ATG9 is a transmembrane protein and its bidirectional movement 
between phagophore assembly sites (PASs) and non-PASs contrib-
utes to the delivery of membranous structures to form autophago-
somes.21 Two ubiquitin-like conjugation systems are also required 
for the vesicle elongation process. One system is mainly formed by 
ATG5 and ATG12; the other involves the conjugation of phosphatidy-
lethanolamine (PE) to microtubule-associated protein 1 light chain 3 
(LC3)/ATG8.22 LC3 is synthesized as pro-LC3, which is cleaved at the 
C-terminus with the help of protease AGT4 to form LC3-I. The lipid 
conjugation of PE leads to the conversion of LC3-I to the autophagic 
membrane-bound LC3-II.23 LC3-II is recruited to the membranes of 
autophagosomes and remains on the completed autophagosomes 
until lysosomal fusion.3,24

3  | AUTOPHAGY AND PERIODONTAL 
PATHOGENS

Numerous microorganisms and their metabolic products com-
pose the dental plaque.25,26 Over 500 microbial species have been 

F I G U R E  1   Schematics showing autophagic flux. Upon initiation of macroautophagy, cytosolic materials are encapsulated by a 
double membrane. Both ends of the phagophore elongate, resulting in the formation of an autophagosome. The outer membrane of the 
autophagosome then fuses with a lysosome to form an autolysosome, where the contents are degraded. Microautophagy occurs when the 
cytosolic cargo is directly sequestered by invagination of the lysosomal membrane. In chaperone-mediated autophagy, substrate proteins 
are recognized by lysosomal chaperones and transported across the lysosomal membrane through the membrane receptor
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identified from the human dental plaque thus far, and the dysbiosis 
of microbial biofilms is considered a pathogenic precursor of PD.27 
In periodontitis, subgingival plaque is mainly composed of Gram-
negative periodontal bacteria, including Porphyromonas gingivalis 
(P.g), Aggregatibacter actinomycetemcomitans (A.a), Tannerella for-
sythia, Treponema denticola, and Spirochetes. Among these, P.g is 
a major opportunistic pathogen associated with PD that has been 
widely studied.28,29

Autophagy has a dual role in response to periodontal pathogens. 
First, autophagy enhances the survival of periodontal pathogenic 
bacteria. Increasing evidence indicates the ability of host-adapted 
pathogens to exploit host autophagy for survival and persistence in 
the host.30,31 Some periodontal bacteria have evolved mechanisms 
that use the autophagic response; therefore, autophagy may provide 
a route for bacteria to escape from the host immune defense. It has 
been confirmed that the level of autophagy is higher in patients with 
periodontitis than in healthy individuals.32,33 As an inducer of PD, P.g 
and its lipopolysaccharide (LPS) have been demonstrated to enhance 
autophagic activity.32,34-36 A study found that the inhibition of auto-
phagy by 3-methyladenine (3-MA) or ATG5 depletion significantly 
decreased the survival of P.g in gingival epithelial cells (GECs).34 
PI3K/ protein kinase B (Akt)/mTOR signaling pathway is a critical 
regulator of autophagy and inactivation of it results in autophagy 
after P.g invading.35 The induced autophagy in GECs provides a fa-
vorable microenvironment for its persistence and evasion of immune 
defense.37,38 Moreover, P.g in the cytosol is usually degraded by ly-
sosomes, but the ratio of free P.g in the cytosol is low compared with 
P.g co-localized with double-membrane vacuoles.39 Thereby, most 
co-localized P.g evades host defenses by impairing the formation 
of autolysosomes and subsequently accumulated autophagosomes 
supply nutrients for its survival.34,37 Interestingly, a recent study 
found that P.g manipulated the autophagic process to escape from 
immune surveillance and survived within dendritic cells (DCs).40 The 
activation of Akt/mTOR signaling axis suppressed antimicrobial au-
tophagic machinery, resulting in survival of intracellular P.g.40

By contrast, autophagy also induces a type of cell death against 
infection by periodontal bacteria. Butyrate, a metabolic by-product 
of periodontal bacteria, promoted cell death via autophagy induc-
tion by increasing the conversion of LC3-I to LC3-II in GECs. The au-
tophagy inhibitor 3-MA significantly suppressed cell death induced 
by butyrate.41 Furthermore, the induction of autophagy in immune 
cells enhanced intracellular bacteria killing during the antibacterial 
process.42,43 The relationship between autophagy and periodontal 
pathogens is complex during the pathogenesis of PD and requires 
further investigation.

4  | AUTOPHAGY AND THE IMMUNE 
RESPONSE

The progression of PD is influenced by multiple factors and the im-
balance between host immunity and pathogens is one of the cru-
cial factors for PD.44,45 Activation of the innate immune response 

is considered as the first line of defense against bacterial infection. 
Pattern recognition receptors (PRRs) including Toll-like receptors 
(TLRs) and nucleotide-binding oligomerization domain -like recep-
tors (NLRs) on the surface of phagocytes are critical components 
necessary to trigger the primary immune response. PRR signaling is 
induced following the recognition of pathogen-associated molecular 
patterns and damage associated molecular patterns after pathogen 
attack of host tissues.46

Autophagy restricts pathogen invasion and serves as an effector 
mechanism of innate immunity.47 It provides a mechanism for the 
elimination of invading pathogens in immune cells. Phagocytes, in-
cluding macrophages, neutrophils, and monocytes, are key cells of 
the innate immune response that initiate a timely response against a 
large number of pathogens. The enhanced autophagic flux induced 
by periodontal bacteria is found in periodontal tissues as well as in 
these immune cells. After invasion of P.g, the expression of autoph-
agy-related Beclin1 and LC3-II, and ATG5-ATG12 conjugation was 
increased in THP-1-derived macrophages and inhibition of autoph-
agy resulted in deceased P.g killing.42 The autophagic response was 
induced following A.a infection in THP-1 cells, which inhibited the 
intracellular survival of A.a.43 Moreover, the induction of autophagy 
by rapamycin impaired P.g survival within DCs.48

The interaction between TLRs and autophagy amplifies the ef-
fects of both systems in response to pathogen invasion in the peri-
odontium. Two members of the TLR family, TLR2 and TLR4, are 
essential for the pathogenesis of PD because the ligands of these 
receptors are components of periodontal bacteria.49 Increased 
expression of TLR2 and TLR4 was observed in gingival epithelia 
and underlying connective tissues in chronic periodontitis.50-52 
Furthermore, alveolar bone resorption induced by P.g infection was 
not observed in TLR4 knock-out mice.53,54 TLRs induce autophagy 
early to ensure the timely upregulation of antimicrobial activities. 
The ubiquitylation of ULK1 and Beclin1 by tumor necrosis fac-
tor receptor–associated factor (TRAF) 6 results in amplification of 
TLR4-induced autophagy.55 Studies found that an increased level of 
autophagy was induced with TLR ligands in macrophages and the 
induction of autophagy inhibited the viability of intracellular patho-
gens.56,57 TLR signaling increased autophagic flux and TLR1/2 ago-
nists inhibited the survival of P.g within human DCs.48 Recently, Wei 
et al found that activation of TLR9 initiated the autophagic response 
in macrophage cell lines and the trend of TLR9 expression changes 
was the same in periodontitis and autophagy, suggesting that TLR9 
was closely associated with autophagy in periodontitis.58

In addition to the innate immune response, adaptive immune 
cells and cytokines are also important players in the pathogenesis 
of PD. The cross-talk between the innate and adaptive immune re-
sponse plays an important role in PD.59 Autophagy functions as a 
regulator of antigen presentation and T-cell function in the adap-
tive immune response. The T-cell-mediated immune response is 
dependent on antigen-presenting cells including DCs, which are 
crucial for initiation of the adaptive immune response. Autophagy 
has been shown to be active in DCs.60,61 Autophagy proteins in 
DCs are critical for the fusion of lysosomes with antigens during 
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presentation, suggesting autophagy is involved in enhancing antigen 
presentation.60,62 Furthermore, autophagy influences the adaptive 
immune response in the differentiation, metabolism, and function of 
T cells.46,63 There are at least four types of CD4+ T cells (T-helper 
cells), including T-helper 1, T-helper 2, T-helper 17, and T-regulatory 
cells; these cells participate in the adaptive immune response to var-
ious pathogens.8 In an ATG3-deficient mouse model, CD4+ T cells 
were decreased in the spleen and lymph nodes.64 Upon Beclin1 de-
letion, decreased numbers of CD4+T cells were observed due to the 
increase in cell death proteins.65 Based on these data, we conclude 
that autophagy is essential for regulating the innate and adaptive 
immune responses in the defense against pathogens.

5  | AUTOPHAGY AND PERIODONTAL 
INFL AMMATION

The initial inflammation in periodontal tissues following pathogen 
invasion is a physiologic defense mechanism.66 The goal of an effec-
tive immune response is to resolve the acute inflammation and es-
tablish periodontal tissue homeostasis.67 If a defective or overactive 
immune response results in a prolonged inflammatory response, the 
inflammation extends deep into the connective tissues. The aberrant 
induction of inflammation breaks the balance between pro-inflam-
matory and anti-inflammatory mechanisms in the periodontium.

Under inflammatory conditions, activation of autophagy pro-
tects cells from apoptosis. An inflammatory environment composed 
of tumor necrosis factor (TNF)-α and interleukin (IL)-1β enhanced the 
expression of autophagy protein LC3-II, Beclin1, and ATG12 in peri-
odontal ligament stem cells (PDLSCs).68 The level of autophagy was 
significantly increased in PDLSCs treated with TNF-α, while apop-
tosis was suppressed.33 Moreover, inhibition of autophagy using 
3-MA increased apoptosis in human gingival fibroblasts (HGFs).32 
Autophagy and apoptosis often occur in the same cell and the in-
duction of autophagy contributes to the suppression of apoptosis.69 
Thus, autophagy may provide a protective effect in an inflammatory 
environment. P38 mitogen-activated protein kinase (MAPK) path-
way is required for autophagy and is shown to induce autophagy in 
HGFs after endoplasmic reticulum stress resulting from PD.70

The role of the autophagic response in the promotion of an-
giogenesis has been investigated in the periodontium. Abnormal 
angiogenesis is a significant feature of periodontal inflammation.71 
Mesenchymal stem cells (MSCs), including PDLSCs, have been 
shown to promote angiogenesis, in which autophagy plays a role.72-74 
The secretion of angiogenin (Ang) and basic fibroblast growth factor 
(bFGF), two important angiogenesis-promoting cytokines, was up-
regulated under inflammatory conditions.68 Induction of autophagy 
with rapamycin and Beclin1 overexpression upregulated the level 
of Ang and bFGF in PDLSCs, whereas knockdown of Beclin1 sup-
pressed angiogenesis-promoting ability.68

Autophagy has been found to inhibit the secretion of pro-in-
flammatory factors and the formation of inflammasomes. The an-
ti-inflammatory function of autophagy was discovered from the 

observation that the production of IL-1β and IL-18 was increased 
in the absence of functional ATG16L1 in Crohn's disease.75 IL-1, 
especially IL-1β, amplified the host inflammatory response in PD.76 
Autophagic activity is responsible for sequestering pro-IL-1β from 
caspase 1 in autophagosomes. IL-1β recruits downstream TRAF6 
and activates TRAF6-dependent ubiquitylation of Beclin1.77 The in-
duction of autophagy with rapamycin leads to the loss of pro-IL-1β 
and inhibition of IL-1β secretion in LPS-treated antigen-presenting 
cells.78 An inflammasome is a multiple protein complex involved in 
the recognition of microorganisms, which stimulates the release of 
mature IL-1β. Several studies have shown that autophagy plays a 
negative role in inflammasome activation.79,80 The ubiquitination of 
assembled inflammasomes and the recruitment of p62 serve to link 
inflammasomes to autophagy.80 Furthermore, inhibition of autoph-
agy significantly increased IL-1β release and NLR family pyrin domain 
containing 3 (NLRP3) inflammasome formation, suggesting that au-
tophagy limited the P.g-induced inflammatory response.42 High lev-
els of mitochondrial ROS production which damage the cell integrity 
and function have been shown in patients with periodontitis and 
a reduction in autophagosome formation was observed after ROS 
enhancement in HGFs.32,81 Consistent with previous findings, ROS 
induction by the autophagic inhibitor 3-MA contributed to NLRP3 in-
flammasome activation and increased IL-1β production.82,83 Another 
study showed that induction of autophagy decreased ROS accumu-
lation in LPS-stimulated HGFs.84 Furthermore, a study showed that 
A.a-induced autophagy limited excessive inflammation via inhibition 
of the release of IL-1β and ROS in macrophages.83 A.a activated the 
influx of autophagy by increasing the expression of the TLR and ex-
tracellular signal-regulated kinase(ERK) signaling pathways.83

Several autophagy-related molecules are also involved in the 
regulation of periodontal inflammation. Cathepsin S (CTSS) is a ly-
sosomal multifunctional cysteine protease and a critical regulator 
of autophagy.85,86 CTSS is a hub protein in the protein-protein in-
teraction network involved in the development of periodontitis.87 
Memmert et al showed that IL-1β-induced inflammatory conditions 
significantly upregulated CTSS expression in human fibroblast-like 
periodontal ligament cells. They also found that CTSS inhibited 
autophagy and inhibition of CTSS-induced autophagy through 
ROS-mediated PI3K and c-Jun N-terminal kinase (JNK) signaling 
pathways.88 Damage-regulated autophagy modulator (DRAM) 1 is 
a lysosomal membrane protein that promotes autophagy to func-
tion against intracellular pathogens in a p53-dependent manner.89,90 
DRAM1 gene expression increased significantly in response to IL-1β 
in vitro and both mRNA and protein levels of DRAM1 were higher in 
gingival biopsies of periodontitis patients.91

6  | AUTOPHAGY AND ALVEOL AR BONE 
HOMEOSTA SIS

Alveolar bone homeostasis is maintained by the balance between 
osteoclastogenesis and osteoblastogenesis.92 An imbalance favoring 
bone resorption over formation results in alveolar bone resorption 
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in periodontitis. Due to the large amounts of waste materials includ-
ing damaged organelles, and mineral and organic components of the 
bone matrix during bone resorption, dynamic autophagy is required 
for degradation and recycling of damaged intracellular structures. 
Autophagy-related proteins have been demonstrated to be impor-
tant mediators in the differentiation and function of bone cells in 
physiologic and pathologic conditions, suggesting a crucial role of 
autophagy in bone homeostasis.93

6.1 | Osteoclasts

Osteoclasts are multinucleated cells derived from hematopoietic 
stem cells upon stimulation with macrophage colony-stimulating 
factor and receptor activator of nuclear factor kappa-Β ligand. 
Increasing evidence has revealed that autophagy regulates os-
teoclast differentiation and bone resorption.94,95 AMP-activated 
protein kinase (AMPK)/mTOR/p70 ribosomal protein S6 kinase 
(p70S6K) signaling pathway is involved in autophagy activation 
and the regulation of synthesis and decomposition of osteoclast 
metabolic processes.95 Osteoclasts resorb bone via the ruffled 
border. Lysosomal fusion with the plasmalemma results in the re-
lease of matrix-degrading molecules such as cathepsin K into the 
extracellular space to digest bone matrix. Autophagy-related pro-
teins including ATG5, ATG7, ATG4β, and LC3 are essential for gen-
eration of the osteoclast ruffled border and secretion of lysosomal 
enzymes in vivo and in vitro.96

Autophagy is responsible for increasing the number of osteo-
clasts and for persistent osteoclastic activation during alveolar bone 
resorption in PD. LPS stimulates osteoclast differentiation by en-
hancing autophagy and increasing ROS levels in pre-osteoclasts.97 
ROS contributes to osteoclast activation during the host response, 
resulting in pathological bone destruction.98 Overexpression of 
Beclin1 significantly increased the number of tartrate-resistant 
acid phosphatase (TRAP)-positive osteoclasts, whereas the inhi-
bition of autophagy inhibited osteoclastogenesis.99 Recently, He 
et al showed that the number of TRAP-positive multinucleated cells 
was lower in a group using autophagy inhibitors 3-MA or chloro-
quine. Furthermore, 3-MA downregulated LPS-induced osteoclast 
formation in a periodontitis rat model.100

Studies have shown that autophagy has a positive effect on 
osteoclast activity in response to pro-inflammatory cytokines. 
The pro-inflammatory cytokine IL-17A contributes to the patho-
genesis of periodontitis, especially alveolar bone loss.101,102 Song 
et al found that IL-17A facilitated osteoclast differentiation and 
exacerbated bone resorption in vitro and in vivo and upregulated 
autophagy activity, including LC3 levels and autophagosome for-
mation. Furthermore, the autophagy inhibitor 3-MA decreased 
the levels of osteoclast-related markers.103 ATG7-deficient osteo-
clast precursors did not exhibit IL-1β-mediated upregulation of 
cathepsin K secretion.104 Thus, inhibition of osteoclast activation 
is a potential approach for protecting alveolar bone from excessive 
resorption in PD.

6.2 | Osteoblasts and osteocytes

The main function of osteoblasts is to mineralize and synthesize 
the bone matrix. Autophagy plays an essential role in the differen-
tiation and mineralization of osteoblasts. As an autophagy recep-
tor targeting ubiquitinated proteins for degradation, neighbor of 
BRCA1 (NBR1) negatively regulates osteoblast differentiation and 
function.105 Whitehouse et al demonstrated that genetic truncation 
of murine NBR1 increased osteoblast differentiation and activity 
in vivo leading to activation of p38 MAPK.106 FIP200, an essential 
component of the autophagic process, enhanced osteoblast nod-
ule formation and differentiation.107 Nollet et al found that the au-
tophagy proteins ATG7 and Beclin1 were essential for mineralization 
in an osteoblastic cell line, and ATG5 deficiency in osteoblasts re-
sulted in decreased bone volume in vivo.108 Inhibition of autophagy 
also negatively regulated MSC differentiation into osteoblasts.109,110 
Coordinated AMPK-dependent autophagy and Akt/mTOR activa-
tion were crucial for osteoblastic differentiation and maintenance 
of bone mass.110 A recent study found that autophagy induced by 
rough surfaces of dental implants accelerated the transition from 
osteoblast proliferation to maturation and the subsequent differ-
entiation into osteocytes.111 Moreover, anti-inflammatory action 
enhanced autophagy and suppressed apoptosis of osteoblasts, sug-
gesting that autophagy of osteoblasts alleviates bone loss associated 
with inflammation.112,113

Osteoblast differentiation is accompanied by changes in cell 
morphology and intracellular organelle contents. Terminally, osteo-
blasts transform into osteocytes and localize to mineralized bone 
matrix.114 Upregulation of autophagic flux may be a mechanism for 
differentiated osteocytes to survive in the hypoxic and poor nu-
trient conditions within the bone matrix. The increased autophagy 
provides raw materials for osteocytes to adapt to a stressful en-
vironment. Using murine osteocytic cell lines, Zahm et al demon-
strated that differentiated osteocyte-like cells exhibited elevated 
levels of LC3-II and autophagosomes.115 They also observed punc-
tate distribution of LC3 in osteocytes, which was not observed 
in osteoblasts on the bone surface in rat tibia.115 Another study 
demonstrated that decreased autophagy via deletion of ATG7 led 
to lower bone mass y.116

7  | CONCLUSIONS

Autophagy plays a dual role in the protection and elimination of peri-
odontal pathogens in the pathogenesis of PD. In recent years, re-
searchers in this field uncovered a new layer of complexity in terms 
of how autophagy functions as a regulator of host inflammatory 
and immune responses to periodontal pathogenic bacterial stimuli. 
Increasing data provide evidence for an essential role of autophagy 
in regulating the differentiation and function of bone cells in alveolar 
bone resorption. This review highlights the multiple regulatory ef-
fects of autophagy on periodontal pathogens, the immune response, 
inflammation, and alveolar bone homeostasis in the development 
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of PD (Figure 2). Maintaining autophagic homeostasis could be a 
potential therapy for controlling host responses and alveolar bone 
resorption of PD in the future. However, the interaction between 

autophagy and PD is still not well understood. More work is needed 
to uncover new ways in which this conservative self-defensive ma-
chinery functions in PD.

F I G U R E  2   Autophagy and its significance in periodontal disease. An overview of the potential roles of autophagy in the pathogenesis 
of periodontal disease. Autophagy enhances innate and adaptive immune responses, inhibits inflammation, and facilitates alveolar bone 
mineralization in terms of preventing periodontal disease. On the other hand, autophagy activation might contribute to the development 
of periodontal disease as it provides a route for microbial survival in the periodontium and allows osteoclastic activation to resorb alveolar 
bone
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