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a b s t r a c t

Women with reproductive capability are more likely to suffer from temporomandibular

disorders (TMD), with orofacial pain as the most common complaint. In the past, we focused

on the role of estradiol in TMD pain through the nervous system. In this study, we explored

estradiol’s influence on synoviocyte gene expressions involved in the allodynia of the

inflamed TMJ. The influence of 17-b-estradiol on NGF and TRPV1 expression in TMJ

synovium was determined in vivo and in vitro and analyzed by Western blot and real-time

PCR. Complete Freund’s adjuvant (CFA) injection into the TMJ was used to induce TMJ

arthritis. Capsazepine served as a TRPV1 antagonist. Head withdrawal threshold was

examined using a von Frey Anesthesiometer. We observed that estradiol upregulated the

expressions of TRPV1 and NGF in a dose-dependent manner. In the primary cultured

synoviocytes, TRPV1 was upregulated by lipopolysaccharide (LPS), estradiol, and NGF, while

NGF antibodies fully blocked LPS and estradiol-induced upregulation of TRPV1. Activation of

TRPV1 in the primary synoviocytes with capsaicin, a TRPV1 agonist, dose-dependently

enhanced COX-2 transcription. Moreover, intra-TMJ injection of TRPV1 antagonist, capsa-

zepine, significantly attenuated allodynia of the inflamed TMJ induced by intra-TMJ injec-

tion of CFA in female rats. This article presents a possible local mechanism for estradiol that

may be involved in TMJ inflammation or pain in the synovial membrane through the pain-

related gene TRPV1. This finding could potentially help clinicians understand the sexual

dimorphism of TMD pain.
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1. Introduction

Women with reproductive capability are more likely to suffer

from temporomandibular disorders (TMD) with orofacial pain

as the most common chief complaint.1 In post-menopausal

females, the possibility of developing a TMD pain case is 30%

higher in patients receiving estrogen replacement therapy

compared to those not exposed; furthermore, the dose

response relationship for estrogens is monotonic.2 Signifi-

cantly higher serum estradiol levels were also found in the

luteal phase of the menstrual cycle in women who have TMD

pain compared to the healthy controls.3 We previously

observed that estradiol levels of synovial fluid in TMD

patients are also higher than the levels of healthy controls.4

Sex hormones appear to be a risk factor for TMD. Recently, we

also observed that 17-b-estradiol, the major component of

estrogen, enhanced the allodynia of temporomandibular

joint (TMJ) inflammation, partially by influencing the expres-

sion of transient receptor potential vanilloid 1 (TRPV1) and

nerve growth factor (NGF) in the hippocampus–this repre-

sents a possible central nervous system (CNS) mechanism for

estrogen involved in TMJ pain.5,6 TMD pain is significantly

related to synovitis, internal derangement, and osteoarthri-

tis, indicating that joint inflammation could be a major reason

for TMD pain.7–10

TRPV1, also known as vanilloid receptor 1, is a nonselec-

tive cation channel that was originally identified as the

capsaicin receptor.11 TRPV1 is mainly expressed in the

peripheral nervous system and plays a key role in the

detection of noxious painful stimuli, such as capsaicin, acid,

heat and endogenous ligands.12 The expression and sensiti-

zation of TRPV1 is regulated by nerve growth factor

(NGF).13,14 Activation of TRPV1 in sensory neurons induces

the release of inflammatory neuropeptides that cause

neurogenic inflammation and pain.15 TRPV1 activation can

also increase COX-2 expression, which is an indicator of

inflammation.16

TRPV1 is not only expressed in the nerves and vessels

distributed in the synovium, but also in the synovial lining

cells in both rat and human TMJs.17,18 However, its biological

role in the TMJ remains unexplored. In this article, we explored

whether estradiol can induce TRPV1 expression in the TMJ

synovium and whether synovial TRPV1 is involved in the

allodynia of the inflamed TMJ.

2. Materials and methods

2.1. Animals

Female Sprague-Dawley rats (180–200 g) were used (Vital River

Laboratory Animal Technology CO., LTD, Beijing, China). The

experiment was approved by the Animal Use and Care

Committee of Peking University and was consistent with

the Ethical Guidelines of the International Association for the

Study of Pain. The rats were randomly divided into 5 groups

(6 rats per group); a group of sham-ovariectomized rats, and

4 groups of ovariectomized rats that received estradiol at

doses 0, 20, 80, or 200 mg.
2.2. Estradiol administration

The rats received bilateral ovariectomies or sham ovariecto-

mies and recovered for 1 week. 17-b-estradiol (Huamei Huli

Biochem CO., LTD, Beijing, China) was dissolved in corn oil. The

ovariectomized rats were dosed with 17-b-estradiol by subcu-

taneous injections at doses of 0, 20, 80 or 200 mg per rat, in a

volume of 200 ml every morning for 12 days. The ovariectomized

rats receiving the above doses of estradiol could generate

different plasma levels of estradiol.5 The sham-ovariectomized

rats were also dosed with subcutaneous injections of identical

amounts of corn oil. The rats were sacrificed with an overdose of

sodium pentobarbital (100 mg/kg body weight).

2.3. Western blot analysis

The synovial membrane of the TMJ, which is composed of a

synovial lining layer and a connective sublining layer,19 was

dissected from the bilateral TMJs. The membrane was then

homogenized in an ice-cold lysis buffer (50 mM Tris–HCl pH

7.5, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1 mM DTT,

1 mM phenylmethylsulfonyl fluoride, 1 mg/ml aprotinin, 1 mg/

ml leupeptin) and centrifuged at 13,000 � g for 20 min at 4 8C.

The protein concentrations of the supernatants were deter-

mined using the BCA assay (Pierce, Rockford, IL, USA) and the

supernatants were resolved by 8% polyacrylamide gel elec-

trophoresis and transferred to a polyvinylidene difluoride

membrane. The membrane was blocked in 5% nonfat dry milk

in TBS-T buffer (50 mM Tris–HCl pH 7.5, 150 mM NaCl, 0.05%

Tween-20) for 1 hr at room temperature and probed with anti-

TRPV1 antibodies (SC-12498, P-19; Santa Cruz Biotechnology,

Santa Cruz, CA) at 1:200, or anti-NGF antibodies (Santa Cruz

Biotechnology) at 1:500 overnight at 4 8C. The membrane was

washed extensively with TBS-T and incubated with horserad-

ish peroxidase-conjugated secondary antibodies for 1 h at

room temperature. After extensive washing with TBS-T, the

membrane was visualized using the ECL kit (Applygen

Technologies Inc., Beijing, China). For the internal control,

the blots were stripped and reprobed with anti-b-actin

polyclonal antibodies (Santa Cruz Biotechnology) at 1:1,000.

2.4. Image analysis

Digital western images were taken with a general electric

scanner (Hewlett-Packard Development Company, L.P., USA).

Numerical value of TRPV1 and NGF productions were performed

with the commonly used image analysis software ImageJ.20

2.5. Isolation of TMJ synovial cells

TMJ synovial cells were isolated from intact female Sprague

Dawley rats as previously described.19 Briefly, the inner surface

of the TMJ capsule was dissected, washed with phosphate-

buffered saline (PBS) three times to remove blood, and main-

tained at 4 8C in PBS with penicillin (1000 U/ml) and streptomycin

(1000 mg/ml) for 10 min. The synovial tissue was cut into small

pieces (1–2 mm3) and digested with 1 mg/ml collagenase IA

(Sigma, St. Louis, MO) at 37 8C for 60 min. The cells in the digested

solution were collected and washed twice with PBS and

cultured in DMEM (Gibco, Gland Island, NY) supplemented
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with 10% heat-inactivated fetal bovine serum (FBS), L-glutamine

(2 mM), penicillin (100 U/ml) and streptomycin (100 mg/ml) at

37 8C in a humidified atmosphere containing 5% CO2.

2.6. Immunocytochemistry of cultured primary cells

The cells were cultured on cover slips and fixed in 4%

paraformaldehyde in PBS for 10 min. After rinsing with PBS,

the cells were treated with 3% H2O2 for 10 min to inactivate

endogenous peroxidases, and blocked with goat serum for

30 min to reduce non-specific background staining. The cells

were then incubated with anti-heat shock protein 25 (HSP 25)

polyclonal antibody (Wuhan Boster Biological Technology Ltd.,

Wuhan, China) at 1:50, or anti-laminin polyclonal antibody

(Wuhan Boster Biological Technology Ltd., Wuhan, China) at

1:100. The cells were washed three times with PBS and

incubated with horseradish peroxidase-conjugated secondary

antibodies for 30 min at room temperature. After thoroughly

washing with PBS, the cells were visualized using 3,30-

diaminobenzidine (Zhong Shan Golden Bridge Biological

Technology CO., LTD, Beijing, China) for 1 min.

2.7. Treatment of synoviocytes with reagents

Identified synoviocytes between passages 3 and 5 were used.

The cells were treated alone or in combination with the

following reagents for 24 h: vehicle (0.1% ethanol), 17-b-

estradiol (1 nM, dissolved in ethanol), lipopolysaccharides

(LPS, 1 mg/ml), NGF (20 ng/ml), and rabbit anti-NGF serum

(0.5 mg/ml) as indicated in Fig. 2C. The antiserum was added

into the media 30 min before the other reagents. To examine

whether the activation of synovial TRPV1 could affect COX-2

expression, the cells were treated with either TRPV1 agonist

capsaicin (Sigma, St. Louis, MO, USA) dissolved in adimethyl

sulfoxide (DMSO) vehicle or only the vehicle for 24 h.

2.8. Quantitative real-time PCR

Total RNA was extracted by TRIzol (Invitrogen, Carlsbad, CA).

Reverse transcription was performed using an iScript cDNA

Synthesis Kit (Bio-Rad, Hercules, CA) in a 20 ml reaction volume

containing 1 mg of total RNA, incubated at 25 8C for 5 min,

transcripted at 42 8C for 30 min, and terminated by heating at

85 8C for 5 min. Real-time PCR was performed with Power

SYBRGreen PCR Master Mix using a 7500 Real-time PCR system

(Applied Biosystems, Foster, CA). The reactions were run in

duplicates with 1 ml of cDNA template in a 20 ml reaction volume

with the program running for 50 8C for 2 min and 95 8C for

10 min, followed by 40 cycles of 94 8C for 15 s and 60 8C for 1 min.

The amplification specificity was confirmed by melting curve.

The mRNA level of the target gene was acquired from the value

of the threshold cycle (Ct) as relative level to that of b-actin

through the formula 2�DCt (DCt = b-actinCt � gene of interest Ct).

The primers were synthesized according to the previous study as

follows: rat TRPV1 sense/antisense, 50-GAC ATG CCA CCC AGC

AGG-30/50-TCA ATT CCC ACA CAC CTC CC-3021; rat COX-2 sense/

antisense,50-CTG AGG GGT TACCAC TTC CA-30/50-TGA GCAAGT

CCG TGT TCA AG-3022; rat b-actin sense/antisense, 50-TGA CAG

GAT GCA GAA GGA GA-30/50-TAG AGC CAC CAA TCC ACA CA-

30.23 p75NTR, forward 50-AGCCACGTCAACCTGACTG-30 and
reverse 50-CCTCGCTCGTCACGTTCAC-30; TrkA, forward 50-

GGCGATGACGTGTTTCTGC-30 and reverse 50-AGGAGACGCT-

GACTTGGACA-30. The resultant PCR products were separated

by electrophoresis on a 2% agarose gel and visualised under

ultraviolet transillumination.

2.9. Measurement of mechanical allodynia of TMJ

Twelve intact female Sprague–Dawley rats (180–200 g) were

randomly and equally divided into two groups, either with or

without induction of TMJ inflammation. TRPV1 antagonist

capsazepine (Sigma) was dissolved in DMSO. For the group

without induction of TMJ inflammation, rats (n = 6) were only

injected with 25 ml capsazepine (600 ng) into the left TMJs and

25 ml of vehicle (saline/DMSO at 1:1) into the right TMJs. For the

group with induction of TMJ inflammation, the rats (n = 6) were

also injected with 25 ml capsazepine (600 ng) into the left TMJs

and 25 ml of vehicle into the right TMJs; 25 ml complete Freund’s

adjuvant (saline/CFA at 1:1) was then injected into the bilateral

TMJs 30 min later to stimulate a strong, persistent immune

response and induce TMJ inflammation as reported previously.5

To ensure induction of TMJ inflammation in the proestrous

stage, in which the plasma level of estradiol is highest during

the rat estrous cycle,24,25 CFA was injected into the TMJ in the

late metoestrous stage. This stage was determined by obtaining

a vaginal smear at 4:00 P.M. daily for two consecutive estrous

cycles (Supplemental Fig. 1). Twenty hours after CFA injection,

the head withdrawal threshold was assessed by applying the

filament of an electronic von Frey Anesthesiometer (IITC Life

Science, CA, USA) to the skin before the ear around the TMJ until

the head of rat was withdrawn as previously reported

(Supplemental Fig. 2).26 The force was increased continuously

as the threshold was measured. Each side was tested five times

at an interval of a few seconds. The response threshold was

defined as the lowest force of the filaments that produced at

least three withdrawal responses in five tests.26 Head with-

drawal threshold for one side of the joint were averaged by

number of rats per group and presented as mean � standard

error of mean (SEM).

2.10. Statistical analysis

Data is presented as the mean � standard error of mean (SEM).

Comparisons of head withdrawal threshold from bilateral

TMJs were examined with paired t tests for the same group and

with analysis of variance (ANOVA) for between groups. The

other data were examined with ANOVA. Statistical signifi-

cance was considered at p < 0.05.

Statistical comparison of treatment groups was carried out

using anova followed by Dunnett’s post hoc test with 95%

confidence interval (CI).

3. Results

3.1. Estradiol induced expressions of TRPV1 and NGF in
the TMJ synovial membrane in ovariectomized rats

The expression of TRPV1 in the TMJ synovial membrane

(includes neurons, endothelial cells, and synoviocytes) was



Fig. 1 – Representative immunoblotting of TRPV1 expression (A) and NGF expression (B) in the synovial membrane of the

ovariectomized rats receiving 17-b-estradiol. b-actin served as the internal control of equal loading. Results were presented

as mean W SE. *p < 0.05 versus control group; #p < 0.05 versus 80 mg group.
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lower in the ovariectomized rats receiving no estradiol,

compared to the control group. However, estradiol replace-

ment rescued the decrease of TRPV1 expression and further

potentiated its expression in a dose-dependent manner

(Fig. 1A).

The expression of synovial NGF was very similar to the

expression pattern of synovial TRPV1. However, synovial NGF

was detected mainly in the form of precursors NGF (ProNGF)

(60, 38, and 27 kDa) (Fig. 1B), a method consistent with a

previous report.27

3.2. Characterization of synoviocytes

To further confirm the results in vivo, we cultured primary

synovial cells. Cells isolated from the TMJ synovial membrane

were characterized by immunocytochemistry. We digested

the isolated synovial tissue with collagen IA as described

previously.19 Consistent with the previous study,19 the

majority of the cells demonstrated positive staining for

HSP25 (a homologue of human heat shock protein HSP27)

and laminin in the cytoplasm (Fig. 2A and B), suggesting that

the cultured primary synovial cells were mostly fibroblast-like

synoviocytes (type B cells).19,28 NGF receptor (NGF-R) (TrkA and

p75) were expressed in synoviocytes (Fig. 2C), in line with the

previous study,29,30 NGF and NGF-R were unregulated in
synoviocytes of patients with rheumatoid arthritis or spon-

dyloarthritis.

3.3. Induction of TRPV1 transcription by estradiol
depended on NGF in synoviocytes

We treated synoviocytes with estradiol and LPS to verify that

estradiol and inflammatory cytokines could enhance synovi-

al TRPV1 expression through an NGF pathway. As shown in

Fig. 2D, TRPV1 transcription in the synoviocytes was induced

by treatment with estradiol or LPS ( p < 0.05), but was more

significantly induced by NGF ( p < 0.001). When treated with a

combination of estradiol and LPS, TRPV1 transcription was

further increased compared to the group treated with

estradiol or LPS alone ( p < 0.05). However, pretreatment with

anti-NGF antiserum totally blocked the induction of TRPV1

produced by the combined treatment of estradiol and LPS

( p < 0.05).

3.4. Activation of TRPV1 by capsaicin enhanced COX-2
transcription in synoviocytes

To explore the possible function of synovial TRPV1 in allodynia

of the inflamed TMJ, the synoviocytes isolated from the TMJ

were treated with TRPV1 agonist capsaicin. As shown in Fig. 3,



Fig. 2 – The cells were isolated from the TMJ synovial membrane and showed positive staining for heat shock protein 25 (A)

and laminin (B) in the cytoplasm. (C) The cultured synovial cells were treated with the indicated reagents for 24 h and

TRPV1 expression was evaluated by real-time PCR. *p < 0.05 vs. control group; **p < 0.01 vs. control group; ***p < 0.001 vs.

control group; $p < 0.05 vs. estradiol group; #p < 0.05 vs. LPS group ( p < 0.05); &p < 0.01 vs. LPS + estradiol group (n = 3,

ANOVA).
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Fig. 3 – The cells were treated with TRPV1 agonist capsaicin

for 24 h and COX-2 expression was evaluated with real-

time PCR. *p < 0.05 vs. control group; ***p < 0.001 vs. control

group. #p < 0.05 vs. other 2 groups (n = 3, ANOVA).
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the expression of synovial COX-2 mRNA was induced by

capsaicin in a dose-dependent manner.

3.5. TRPV1 antagonist capsazepine pretreatment
attenuated allodynia of inflamed TMJ in female rats

To further explore the role of synovial TRPV1 in vivo, TRPV1

antagonist (capsazepine) pretreatment was applied to the TMJ

before the induction of TMJ arthritis. As shown in Fig. 4, the

group without induction of TMJ inflammation had no

difference between the baseline head withdrawal threshold

of TMJ on the side with the intra-TMJ capsazepine injection

and that of TMJ on the contralateral side with the vehicle

injection ( p > 0.05, n = 6, paired t test). In the group with

induced TMJ inflammation, the head withdrawal threshold on

the side with prior intra-TMJ injection of the vehicle decreased
Fig. 4 – Intra-TMJ injection of TRPV1 antagonist

capsazepine significantly attenuated mechanical

allodynia of the inflamed TMJ. *p < 0.05 vs. the group

without TMJ inflammation; #p < 0.05 vs. the contralateral

side within the same inflammation group. L = left;

R = right. n = 6, paired t test.
26% compared to the group without TMJ inflammation

( p < 0.05, n = 6, ANOVA). However, the TMJ inflammation-

induced decrease of head withdrawal threshold was partially

reserved in the contralateral side with the intra-TMJ pretreat-

ment injection of capsazepine ( p < 0.05, n = 6, paired t test).

4. Discussion

Pronociceptive or antinociceptive effects of estradiol remain

fiercely controversial in the literature.31 In the present study,

we showed that estradiol potentiated expressions of TMJ

synovial NGF and TRPV1 in ovariectomized rats. Furthermore,

we also showed that intra-TMJ injection of TRPV1 antagonist

partially attenuated mechanical allodynia of an inflamed TMJ.

These results suggest that estradiol may augment nociception

from an inflamed TMJ through the upregulation of TRPV1

expression in the TMJ synovial membrane–this is a possible

local mechanism underlying the predominance of females

among TMD patients.

4.1. Rat temporomandibular joint inflammation induced
by injection of CFA

TMD represents a heterogeneous cluster of diseases and joint

inflammation could be a major reason for TMD pain.7–10 Thus

far, several methods have been attempted to create animal

models of TMD, including disc displacement (DD),32 mouth

opening,33 drug-inducing,34,35 and spontaneously occurring

methods.36 Because of the limited availability of special

animal species, complicated operations, and slow progression

of the disease, the use of spontaneous or surgical-induced

methods was limited.35,37 CFA is a solution of antigen

emulsified in mineral oil and consists of inactivated and dried

mycobacteria. LPS, a main component of gram-negative

bacteria outer membranes, binds specifically to Toll-like

receptor 4 (TLR-4) expressed in various immune and non-

immune cells and induces a robust immune reaction via

induction of proinflammatory cytokines such as TNFa, IL-1b,

IL-6, and chemokines, including other inflammatory fac-

tors.38–40 The rat TMJ synovial tissue expressed TLR-4 and it’s

the target of LPS,41 in line with the activation of TLR signalling

in synovial fibroblasts that leads to secretion of cytokines,

chemokines and matrix-degrading enzymes.42–45 Twenty-four

hours after injection of CFA into TMJ, chromodacryorrhea in

the eyes and intense redness, swelling over the TMJ region and

allodynia of inflammatory temporomandibular Joint were

observed in all the CFA-injected groups.31,46 Histopathologic

examination showed that the synovial tissues were hyper-

trophied, with an increase of synoviocytes and infiltrated

leukocytes in the CFA-injected TMJ.31 Angiogenesis and fibrin-

like exudate in the superior joint space were also observed in

the CFA-injected TMJ compared with the control joint.31 The

expression of the tumor necrosis TNF-a, IL-1b, IL-6, COX-2,

and inducible nitric oxide synthase in the synovial membrane

was upregulated, indicating that injection of CFA into the TMJ

successfully induced TMJ inflammation.47 CFA injection is

simple and reproducibly induces TMJ inflammation, as shown

in previous work by us and others with a focus on the phase of

inflammation.31
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4.2. Estradiol inducing TMJ synovial TRPV1 expression
depended on NGF

Estrogen receptor alpha is expressed in type B synovial cells

of the rat TMJ, so the TMJ synovial membrane is an estrogen

target tissue.31 In this investigation, we showed that

estradiol could potentiate the expressions of TRPV1 and

NGF in the TMJ synovial membrane in ovariectomized rats.

Moreover, the expressions of TRPV1 and NGF in the synovial

membrane appeared to be dependent on the plasma level of

estradiol (Fig. 1), as their expressions were both decreased in

the ovariectomized rats without estradiol replacement

compared to the control. Our results are in line with studies

showing that estradiol enhances TRPV1 and NGF expression

in the dorsal root ganglion and hippocampus.6,48 However,

whether the enhancement of TRPV1 expression by estradiol

was NGF-mediated remains unknown. TPRV1 is upregulated

by NGF both in vitro 13 and in vivo.49 Considering that

the synovial NGF was also induced by estradiol in this study,

we examined whether NGF mediated estradiol-enhanced

synovial TRPV1 expression in cultured TMJ synoviocytes.

We confirmed that estradiol-induced TRPV1 transcription

depended on NGF, as anti-NGF antiserum completely

blocked the combined effects of LPS and estradiol on TRPV1

in synovial cells (Fig. 2). The results also suggested that NGF

mediated LPS-induced synovial TRPV1 transcription. More-

over, it appeared that estradiol could enhance the effects of

LPS on TRPV1 expression. Since LPS promotes the secretion

of pro-inflammatory cytokines in many cell types, it may

induce synovial TRPV1 expression through inflammatory

mediators or cytokines.

4.3. ProNGF involved in allodynia of inflamed TMJ

NGF is secreted as a precursor and cleaved by its regulators to

generate mature NGF.50 ProNGF is generally thought to be

cleaved to the mature, biologically active NGF prior to

secretion. It has been commonly held that NGF performs

its effects primarily through TrkA, inducing a cascade of

tyrosine kinase-initiated responses, while proNGF binds

more strongly to p75NTR. A coimmunoprecipitation study

further confirmed that p75NTR bound pro-NGF more than

mature NGF.51 There are increasing reports on this precursor

form of neurotrophins upregulated in pathophysiological

conditions.52–54 It is showed that pro-NGF binding to p75NTR

is responsible for Inflammatory thermal hypersensitivity.55,52

In the present study, the upregulation of endogenous pro-

NGF induced by estradiol may involve in allodynia of inflamed

temporomandibular joints in female rats induced by CFA.

4.4. Synovial TRPV1 involved in allodynia of inflamed
TMJ

Activation of TRPV1 in the joint afferents may cause a

secondary release of neuropeptides.56 Here, we demonstrated

that activation of TRPV1 by capsaicin dose-dependently

increased COX-2 expression in TMJ synoviocytes (Fig. 3).

COX-2 is the major enzyme in the biosynthesis of prostaglan-

dins, such as PGE2 and PGI2, which are important inflammatory

mediators. Injection of PGE2 or PGI2 through the artery close
to the knee has been found to sensitize joint afferents in

response to mechanical and chemical stimuli.57,58 In addi-

tion, the level of PGE2 in TMJ fluid is significantly and

positively correlated to an index of clinical joint pathology or

pain during joint movement in the TMJ with inflammatory

disorders.59,60 TRPV1 is constitutively activated in inflamed

tissues due to low pH and increased temperature. Therefore,

our results regarding capsaicin’s effects in synoviocytes

suggested that once synovial TRPV1 was activated, it would

increase the release of prostaglandins from the synoviocytes

and lead to hyperalgesia or allodynia of the inflamed joint.

This suggestion was in fact supported by our results

demonstrating that intra-articular injection of capsazepine,

a competitive TRPV1 antagonist, significantly attenuated

mechanical allodynia of the inflamed TMJ (Fig. 4). This also

revealed that synovial TRPV1 could be involved in nociception

of the inflamed TMJ. The TMJ synoviocytes may receive

noxious stimuli and initiate vicious cycles of synovial TRPV1

activation and inflammation, leading to the sensitization of

TMJ afferents.

However, targeting synovial TRPV1 alone may not suffi-

ciently block hyperalgesia or allodynia of the inflamed TMJ.

Our intra-articular injections of capsazepine did not complete-

ly block allodynia of the inflamed TMJ, which is in line with a

previous report showing that hyperalgesia is greatly decreased

in TRPV1 knockout mice but not completely absent compared

to the wild type mice.61 This indicates that multiple mecha-

nisms may be involved in the complex processes of joint pain.

Since pain and inflammation are inherently linked, peripheral

application of a TRPV1 antagonist with anti-inflammatory

drugs may still have clinical significance.

5. Conclusions

In conclusion, the NGF-TRPV1 signalling pathway in TMJ

synoviocytes was induced by estradiol and may be involved in

the allodynia of inflamed TMJs. Estradiol may potentiate TMD

pain through the induction of synovial TRPV1. Peripheral

application of TRPV1 antagonist with anti-inflammatory drugs

may have anelgesic effects on TMD pain.
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